The distribution functions of finitely additive vector measures over Rq, I

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On finitely additive vector measures.

In this paper we extend the well-known Vitali-Hahn-Saks and Nikodým theorems for measures to finitely additive vector-valued set functions.

متن کامل

Finitely Additive Equivalent Martingale Measures

Let L be a linear space of real bounded random variables on the probability space (Ω,A, P0). There is a finitely additive probability P on A, such that P ∼ P0 and EP (X) = 0 for all X ∈ L, if and only if c EQ(X) ≤ ess sup(−X), X ∈ L, for some constant c > 0 and (countably additive) probability Q on A such that Q ∼ P0. A necessary condition for such a P to exist is L − L+∞ ∩ L + ∞ = {0}, where t...

متن کامل

An Isomorphism Theorem for Finitely Additive Measures

A problem which is appealing to the intuition in view of the relative frequency interpretation of probability is to define a measure on a countable space which assigns to each point the measure 0. Such a measure of course becomes trivial if it is countably additive. Finitely additive measures of this type have been discussed by R. C. Buck [l] and by E. F. Buck and R. C. Buck [2]. In a discussio...

متن کامل

A Note on Invariant Finitely Additive Measures

We show that under certain general conditions any finitely additive measure which is defined for all subsets of a set X and is invariant under the action of a group G acting on X is concentrated on a G-invariant subset Y on which the G-action factors to that of an amenable group. The result is then applied to prove a conjecture of S. Wagon about finitely additive measures on spheres. It is well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1984

ISSN: 0022-247X

DOI: 10.1016/0022-247x(84)90285-3